skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Varol, T"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Recent text-based causal methods attempt to mitigate confounding bias by estimating proxies of confounding variables that are partially or imperfectly measured from unstructured text data. These approaches, however, assume analysts have supervised labels of the confounders given text for a subset of instances, a constraint that is sometimes infeasible due to data privacy or annotation costs. In this work, we address settings in which an important confounding variable is completely unobserved. We propose a new causal inference method that uses two instances of pre-treatment text data, infers two proxies using two zero-shot models on the separate instances, and applies these proxies in the proximal g-formula. We prove, under certain assumptions about the instances of text and accuracy of the zero-shot predictions, that our method of inferring text-based proxies satisfies identification conditions of the proximal g-formula while other seemingly reasonable proposals do not. To address untestable assumptions associated with our method and the proximal g-formula, we further propose an odds ratio falsification heuristic that flags when to proceed with downstream effect estimation using the inferred proxies. We evaluate our method in synthetic and semi-synthetic settings---the latter with real-world clinical notes from MIMIC-III and open large language models for zero-shot prediction---and find that our method produces estimates with low bias. We believe that this text-based design of proxies allows for the use of proximal causal inference in a wider range of scenarios, particularly those for which obtaining suitable proxies from structured data is difficult. 
    more » « less